7.3 Trigonometric Substitution

In the following table we have a list of trigonometric substitutions that are effective for the given radical expressions because of the specified trigonometric identities. In each case the restriction on θ is imposed to ensure that the function that defines the substitution is 1 - to - 1.

Table of Trigonometric Substitutions

Expression		Substitution	Identity
$\sqrt{a^2-x^2}$	$x = a\sin\theta,$	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$1-\sin^2\theta=\cos^2\theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta,$	$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$1 + \tan^2 \theta = \sec^2 \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$,	$0 \le \theta < \frac{\pi}{2}$, or $\pi \le \theta < \frac{3\pi}{2}$	$\sec^2\theta - 1 = \tan^2\theta$

Below is a table showing how to use the Trigonometric Substitutions. Using these types of substitution is called **inverse substitution**. Try to match the type of radical in your integral with one of the examples below.

Example: Evaluate

$$\int \frac{\sqrt{9-x^2}}{x^2} dx$$

Notice this problem matches up with type 1. Let $x = 3 \sin \theta$, where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. Then $dx = 3 \cos \theta d\theta$

$$\sqrt{9-x^2} = \sqrt{9-9sin^2\theta} = \sqrt{9(1-sin^2\theta)} = \sqrt{9cos^2\theta} = 3|cos\theta| = 3cos\theta$$

(Note that $\cos \theta \ge 0$ because $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.) Thus the inverse substitution rule gives

$$\int \frac{\sqrt{9 - x^2}}{x^2} dx = \int \frac{3\cos\theta}{9\sin^2\theta} 3\cos\theta d\theta = \int \frac{9\cos^2\theta}{9\sin^2\theta} d\theta$$
$$= \int \cot^2\theta d\theta = \int (\csc^2\theta - 1) d\theta$$
$$= -\cot(\theta) - \theta + C$$

Since this is an indefinite integral we must return to the original variable \mathbf{x} . This can be done by either using trigonometric identities to express $\cot(\theta)$ in terms of $\sin\theta = \frac{x}{3}$ or by drawing a diagram similar to the diagram in TYPE 1 (see below) where θ is interpreted as an angle of a right triangle. Since $\sin\theta = \frac{x}{3}$ we can label the side opposite θ as \mathbf{x} and the hypotenuse as 3 which, by using the Pythagorean Theorem, gives us $\sqrt{9-x^2}$ for the adjacent side.

Therefore $\cot \theta = \frac{\sqrt{9-x^2}}{x}$ (Although $\theta > 0$ in the diagram, this

expression for cot θ is valid even when $\theta < 0$.) Since $\sin \theta = \frac{x}{3}$, we have $\theta = \sin^{-1}\left(\frac{x}{3}\right)$ and so by back substituting we get:

$$\int \frac{\sqrt{9-x^2}}{x^2} dx = -\frac{\sqrt{9-x^2}}{x} - \sin^{-1}\left(\frac{x}{3}\right) + C$$

Example: Evaluate

$$\int_{1}^{4} \frac{\sqrt{x^2 + 4x - 5}}{x - 2} dx$$

This is not an obvious example. We have to complete the square of $x^2 + 4x - 5$.

$$\int_{1}^{4} \frac{\sqrt{(x-2)^2 - 9}}{x+2} dx$$

Let $\mathbf{u} = \mathbf{x} + 2$, then $\mathbf{du} = \mathbf{dx}$ and the limits of integration change: when $\mathbf{x} = 1$ then $\mathbf{u} = 3$, $\mathbf{x} = 4$ then $\mathbf{u} = 6$

$$\int_{3}^{6} \frac{\sqrt{u^2 - 9}}{u} du$$

This matches up with TYPE 3 and we can now do a secant substitution where $\mathbf{u} = 3\sec\theta$ and $\mathbf{du} = 3\sec\theta \tan\theta \, d\theta$. Changing the limits of integration again, when $\mathbf{u} = 3$ then $\mathbf{\theta} = \mathbf{0}$ and when $\mathbf{u} = 9$, $\mathbf{\theta} = \frac{\pi}{3}$, so we have the following:

$$\int_{1}^{4} \frac{\sqrt{(x-2)^{2}-9}}{x+2} dx = \int_{3}^{6} \frac{\sqrt{u^{2}-9}}{u} du = \int_{0}^{\frac{\pi}{3}} \frac{\sqrt{(3\sec(\theta))^{2}-9}}{3\sec\theta} \cdot 3\sec(\theta)\tan(\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{3}} \frac{\sqrt{9\sec^{2}(\theta)-9}}{3\sec\theta} \cdot 3\sec(\theta)\tan(\theta) d\theta = \int_{0}^{\frac{\pi}{3}} \frac{\sqrt{9(\sec^{2}(\theta)-1)}}{3\sec\theta} \cdot 3\sec(\theta)\tan(\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{3}} \sqrt{9\tan^{2}(\theta)} \cdot \tan(\theta) d\theta = \int_{0}^{\frac{\pi}{3}} 3\tan(\theta) \cdot \tan(\theta) d\theta = 3\int_{0}^{\frac{\pi}{3}} \tan^{2}(\theta) d\theta = 3\int_{0}^{\frac{\pi}{3}} (\sec^{2}(\theta)-1) d\theta$$

$$= 3(\tan(\theta)-\theta)|_{0}^{\frac{\pi}{3}} = 3\left[\left(\tan\left(\frac{\pi}{3}\right)-\frac{\pi}{3}\right)-(\tan(0)-\theta)\right] = 3\left[\sqrt{3}-\frac{\pi}{3}\right] = 3\sqrt{3}-\pi$$

Example: Evaluate

$$\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$$

This is a TYPE 2 trigonometric substitution so we let $x=2tan(\theta)$ and $dx=2sec^2(\theta)d\theta$, therefore

$$\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx = \int \frac{2sec^2(\theta)d\theta}{4tan^2(\theta)\sqrt{4tan^2(\theta) + 4}} = \int \frac{2sec^2(\theta)d\theta}{4tan^2(\theta)\sqrt{4(tan^2(\theta) + 1)}}$$

$$= \int \frac{2sec^2(\theta)d\theta}{4tan^2(\theta) \cdot 2\sqrt{(tan^2(\theta) + 1)}} = \int \frac{2sec^2(\theta)d\theta}{8tan^2(\theta)\sqrt{sec^2(\theta)}} = \frac{1}{4} \int \frac{\sec(\theta)}{tan^2(\theta)}d\theta$$

Rewrite $\frac{\sec(\theta)}{\tan^2(\theta)}$ in terms of cosine and sine. $\frac{\sec(\theta)}{\tan^2(\theta)} = \frac{\frac{1}{\cos(\theta)}}{\left(\frac{\sin(\theta)}{\cos(\theta)}\right)^2} = \frac{1}{\cos(\theta)} \cdot \frac{\cos^2(\theta)}{\sin^2(\theta)} = \frac{\cos(\theta)}{\sin^2(\theta)}$ Therefore

$$\frac{1}{4} \int \frac{\sec(\theta)}{\tan^2(\theta)} d\theta = \frac{1}{4} \frac{\cos(\theta)}{\sin^2(\theta)} d\theta$$

Let $\mathbf{u} = \sin(\theta)$ thus $\mathbf{du} = \cos(\theta) d\theta$ using \mathbf{u} – substitution we get:

$$= \frac{1}{4} \int \frac{1}{u^2} du = \frac{1}{4} \left[-\frac{1}{u} + C \right] = -\frac{1}{4u} + C$$

Remember $\mathbf{u} = \sin(\theta)$ so we back substitute and we get:

$$= -\frac{1}{4\sin(\theta)} + C = -\frac{1}{4}\csc(\theta) + C$$

Now we must write $\csc(\theta)$ in terms of **x** so we use the diagram below to get that $\csc(\theta) = \frac{\sqrt{x^2+4}}{x}$

$$\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx = -\frac{\sqrt{x^2 + 4}}{x} + C$$